
IPFS BLOX
Set-up and user guide v 1.0

01

Table of Contents

ABSTRACT

Introduction to IPFS

UNDERSTANDING IPFS?

Functionalities and features

BASIC INSTALLATION OF IPFS USING AWS

A complete guide on how to start using IPFS using AWS

HOW TO SET-UP A REVERSE PROXY WITH NGINX

Presentations are tools that can be used as lectures.

IPFS BLOX02

INTRODUCTION
ABSTRACT

03

In this day and age, the internet has become such an important tool in our everyday lives. We use it to consume media, to communicate with

friends and colleagues, to learn, to handle our finances, and much more; but the web as we know it, has a problem. Information on the web is

centralized; stored in massive server farms which are usually controlled by big companies. Have you ever wondered if sites like Twitter,

YouTube or Wikipedia go offline?

IPFS (InterPlanetary File System) is an open source, file sharing system that aims to make the web completely decentralized by running a

peer-to-peer (P2P) file storage network that works similarly to how BitTorrent and Blockchain.The large centralized cloud storage providers

such as Amazon, Google, Dropbox and many others control the large waves of the market. It’s not just the cloud storage market specifically

but the whole centralized web hosting industry and the clients’ server infrastructure that’s built on top of it.

With all these methods of file storage, you have one central point of failure.

Moreover, your files are technically the property of these providers while stored on their servers. Not to mention the rising cost of using these

services.Data centralization brings another problem which is censorship. Because content is hosted in just a few servers, it's easy for

governments to block access to them. In 2017, Turkey ordered internet providers to block access to Wikipedia because the administration

called it a threat to national security.But why do we keep using this centralized web?One reason is because we have high expectations when

it comes to the internet. We want pages, images and videos to load instantly and we want them in high quality. Centralizing servers allow

companies to have complete control over how fast they can deliver their content.

04

Let us first understand how we access content on the web right now.

Suppose you want to download a photo from the internet. The location of the

photo is the IP address or the domain name and this is called location-based

addressing. When you download the photo, you tell the computer exactly where

to find it; but if that location is not accessible—if the server is down for instance

—you will not be able to get that photo.

When that happens, however, there is still a high chance that someone else has

downloaded that photo before, and still has a copy of it; yet your computer

won't be able to copy that photo from that person.

To fix this, IPFS moves from location addressing to content-based addressing.

Instead of pointing “where” to find the resource, you simply state what it is you

want. Every file on the web has a unique hash which can be compared to a

fingerprint.

HOW DOES IT WORK?

When you want to download a certain file, you just ask the network: “Who has the

file with this hash?” and someone on the IPFS network will provide this to you.

05

IPFS uses hash functions to request a file, which means the architectural structure of IPFS is transparent and you can always verify what you

have received. Another feature of using hash to address content integrity is deduplication. This happens when multiple people publish the same

file on IPFS. To fix this, IPFS will create the file only once which makes the network quite efficient.

BUILT-IN SECURITY FOR IPFS

Files are stored inside IPFS objects, and these objects can store up to 256 KB worth of data. They can also contain links to other IPFS objects. A

simple “hello world” text file can be stored in a single IPFS object.

Files that are larger than 256 KB—like an image or a video for instance—are split into multiple IPFS objects that are all 256 KB in size. The system

will then afterwards create an empty IPFS object that links to all the other pieces of the file.

The data architecture of IPFS is simple and yet it can be very powerful. This architecture allows us to really use it as a File System. Since IPFS

uses content-based addressing, once something is added, it can no longer be changed. It is an immutable datastore much like the blockchain.

IPFS supports versioning of your files. If you are working on an important document that you want to share with everyone over IPFS, it will create

a new commit object for you. This object is really basic. It simply tells IPFS which commit went before it and it links to the IPFS object of your file.

For instance, if you want to update this file, you can simply add your updated file to IPFS and the software will commit a new commit object for

your file. This commit object now links to the previous commit. This process can be repeated endlessly. IPFS will make sure that your file and its

entire history is accessible to other nodes on the network.

STORING AND SERVING FILES ON IPFS

06

Connecting to Instance

Upload the private key file that you created when you launched the

instance, (ex ipfs.pem). Change the key permission to ensure that it

is not publicly viewable. If you are using Linux, use the ssh command

to connect to the instance. For Windows, you can use Putty as client

terminal to perform remote access to the server.

Getting started with EC2

Create basic AWS EC2 with the following initial size

BASIC INSTALLATION USING AWS

Note: Global IP address will be randomly given by AWS when

you allocate Elastic IP address. Only local IP addresses can be

statically filled when creating the instance.
Hostname: IPFS

Instance Type: General Purpose t2.micro

vCPU: 1

Mem GiB4: 1

Storage: 30 GiB

Note: Server Global IP address or Public DNS can be used to

remotely access the server. Public DNS can be enabled or

disabled under VPC Edit DNS hostname.

$ chmod 400 ipfs.pem
$ ssh –i ipfs.pem ubuntu@ec2-xx-xx-xx-xx.ap-southeast-1.compute.amazonaws.com

07

IPFS installation

1. After using the SSH command to the server, create a user for IPFS
and log on. Upgrade the system using apt-get update/upgrade to
apply the latest security updates and then install go language.

BASIC INSTALLATION USING AWS

$ sudo su - root
$ useradd -s /bin/bash -m -d /home/ipfs -c “ipfs user”
ipfs
$ passwd ipfs
$ usermod –aG sudo ipfs
$ su – ipfs
$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo apt-get install golang-go -y

2. Download the latest version available for go-ipfs binary with
wget; unpack it using tar –xvfz. Clean it up by removing the
downloaded archive using rm. Move the executable file to the
directory program with mv and then remove the other unpacked
folder using the rm–rf command.

$ wget https://dist.ipfs.io/go-ipfs/v0.6.0/go-
ipfs_v0.6.0_linux-amd64.tar.gz
$ tar xvfz go-ipfs_v0.6.0_linux-amd64.tar.gz
$ rm go-ipfs_v0.6.0_linux-amd64.tar.gz
$ sudo mv go-ipfs/ipfs /usr/local/bin/ipfs
$ rm -rf go-ipfs

08

IPFS installation

3. Verify your installation using ipfs version command. Initialize the
IPFS, and create a new directory (optional) to use for the repo. You
can also use the user’s home directory. Use mkdir to create a directory
for repo, then add the repo path to .bash_profile script and source
that can run the code contained in the file.

BASIC INSTALLATION USING AWS

$ ipfs version
$ mkdir data
$ cd data
$ echo 'export IPFS_PATH=/home/ipfs/data' »~/.bash_profile
$ source ~/.bash_profile
$ ipfs init -p server

4. Once you see the message “initialized successful”, it will
generate a local IPFS repository, as well as a cryptographic key
pair that allows the IPFS node to cryptographically sign the content
and messages that will be created later. To get started, after ipfs
init command, IPFS provides a content that you can read and
match the path you gave. You can view or read the content using
the command ipfs cat.

$ ipfs cat
/ipfs/QmQPeNsJPyVWPFDVHb77w8G42Fvo15z4bG2X8D2GhfbSXc/readme

09

IPFS installation

5. Locate where IPFS stores the repository content by using
the ls command. All contents of the IPFS repository are stored in the
directory that was created. The configuration for the IPFS repo is
in json file format. You can view the current config using the ipfs
config show command.

BASIC INSTALLATION USING AWS

6. To increase the storage capacity of the repository created, the
config file can be edited and assigned a value for the
Datastore.StorageMax using the command below:

$ ipfs config Datastore.StorageMax 20GB
$ ipfs config show | grep StorageMax

10

IPFS installation

7. Create systemctl service to automatically start the IPFS daemon
when the instance node gets restarted so you won’t have to do it
manually. You may then enable the new service and start it using the
commands below:

BASIC INSTALLATION USING AWS

8. Once the service is started, you will see the output from the
daemon. You will also see other IPFS peers connecting and routing
through the newly configured node. Running the command ipfs
swarm peers, will view the long list of connected peers to your
node.

$ ipfs swarm peers
$ sudo vim /lib/system/system/ipfs.service

$ sudo systemctl daemon-reload
$ sudo systemctl enable ipfs.service
$ sudo systemctl start ipfs.service
$ sudo systemctl status ipfs.service

11

IPFS installation

9. Open up the gateway to be able to browse its address into a browser, and view the document directory or
anything that accessible on the decentralized web. Using the ipfs config Addresses.Gateway command will enable
the public gateway and allow files to access it from your repository. You can be using either public DNS or the public
IP address to browse the content of the repository. The hash will be the same with the hash that produce after the
initialization of the repository.

BASIC INSTALLATION USING AWS

Use the following URL:

For Linux:

http://ec2-xx-xx-xx-

xx.apsoutheast1.compute.amazonaws.com:8080/ipfs/QmQPeNsJPyVWPFDVHb77w8G42Fvo15z4bG2X8D2GhfbSXc

http://xxx.xxx.xxx.xxx:8080/ipfs/QmQPeNsJPyVWPFDVHb77w8G42Fvo15z4bG2X8D2GhfbSXc

$ ipfs config Addresses.Gateway /ip4/0.0.0.0/tcp/8080

12

SETTING UP A REVERSE PROXY WITH NGINX

Using NGINX as a reverse proxy for secure web and to be able to run a secure gateway and connect using browser-based peers. We will

be using secure protocols to ensure that the traffic between peers and browser-based peers are encrypted and private. The WebCrypto

API used by js-ipfs in the browser requires a secure origin and can be achieve it by having secure gateway for accessing to it.

1. Setup the NGINX using our domain and enable the secure websocket connection for ipfs peer node server by reverse proxy. Install

NGINX using command below and enter your instance Public DNS (IPV4) name into your favorite browser, you will see the NGINX default

landing page.

$ sudo apt-get update
$ apt-get -y install nginx-extras
$ sudo apt-get install nginx -y
$ systemctl status nginx

13

2. Setup domain or sub domain associate with your server public IP address then secure TLS connection that controls the instance of a

browser-trusted certificate with SSL on it. We are going to customize the NGINX reverse proxy configuration to connect to our IPFS peer

server addresses. Using vi/vim terminal editor, edit the file ipfsnode.ipfsblox.com as related to your sub domain under /etc/nginx/site-

available directory then copy the server content below without the SSL certification part, SSL certificate can be install using Let’s Encrypt

or purchase to any SSL selling company. Link the configuration file to site-enabled using ln –s command.

SETTING UP A REVERSE PROXY WITH NGINX

$ vim /etc/nginx/sites-available/ipfsnode.ipfsblox.com

$ ln -s /etc/nginx/sites-available/ipfsnode.ipfsblox.com /etc/nginx/sites-enabled/ $ sudo systemctl restart nginx

14

3. The initial configuration set up the welcome page; we will add the

entry point of our gateway by changing the location section of the

file with configuration below.

$ cd /etc/nginx/sites-enabled/
$ vim ipfsnode.ipfsblox.com

4. We will use Let’s Encrypt for free and temporary SSL to have

secure TLS connections or encrypted between the server and

client when browsing our domain, we need to enable HTTPS on

our NGINX server. You can search for the Let’s Encrypt

installation and how to register domain on the web, there are

bunch of tutorial on how to setup. But for now let’s add the SSL

generated by Let’s Encrypt to our server by using the command

below.

SETTING UP A REVERSE PROXY WITH NGINX

$ ln -s /etc/nginx/sites-available/ipfsnode.ipfsblox.com /etc/nginx/sites-enabled/ $ sudo systemctl restart nginx

listen [::]:443 ssl ipv6only=on;
 listen 443 ssl; # managed by Certbot
 ssl_certificate
/etc/letsencrypt/live/ipfsnode.ipfsblox.com/fullchain.pem;
 ssl_certificate_key
/etc/letsencrypt/live/ipfsnode.ipfsblox.com/privkey.pem;
 include /etc/letsencrypt/options-ssl-nginx.conf;
 ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem;
 }

 server {if ($host = ipfsnode.ipfsblox.com) {
 return 301 https://$host$request_uri;
 }
 server_name ipfsnode.ipfsblox.com;
 listen 80;
 listen [::]:80 ;
 return 404;

Note: The above config will be generated by let’s encrypt when you register the domain and obtain a certificate, then all the traffic should

be redirect to HTTPS. To enable the redirecting you should select the option 2 while installing it.

15

5. With the P2P websocket connection to redirecting secure connection over port 4002 to port 8081, we will add the following

configuration below. This includes also the SSL certification location generated by Let’s Encrypt.

SETTING UP A REVERSE PROXY WITH NGINX

server {

server_name ipfsnode.ipfsblox.com;
location / {
 proxy_set_header Host $http_host;
 proxy_cache_bypass $http_upgrade;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_pass http://localhost:8081;
}

listen [::]:4002 ssl ipv6only=on;
listen 4002 ssl;
ssl_certificate
/etc/letsencrypt/live/ipfsnode.ipfsblox.com/fullchain.pem;
 ssl_certificate_key
/etc/letsencrypt/live/ipfsnode.ipfsblox.com/privkey.pem;
 include /etc/letsencrypt/options-ssl-nginx.conf;
 ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem;
 }

16

6. For the complete setup of the NGINX, please see below configuration. After saving it, you can check the NGINX if it is correct by using

command nginx –t and then sudo systemctl restart nginx to apply the settings.

$ nginx –t
$ sudo systemctl restart nginx

17

7. Enable the IPFS features to connect into the browser-based peer

node by enabling websocket support and relay hopping

Swarm.EnableRelayHop to our IPFS node configuration. After adding

the configuration, use the command sudo systemctl restart ipfs to

apply the changes.

$ su – ipfs
$ cd data/
$ ipfs config Addresses.Swarm '[“/ip4/0.0.0.0/tcp/4001”,“/ip4/0.0.0.0/tcp/8081/ws”,“/ip6/::/tcp/4001”]' –json
$ ipfs config –bool Swarm.EnableRelayHop true
$ sudo systemctl restart ipfs

18

8. Let’s test the secure gateway, browse your domain together with the hash that has been generated after the installation of the IPFS.

You can check it by running your IPFS node redirecting to HTTPS when browsing it to your favorite browser, you can see the Lock icon that

indicates it was secured.

Thank you.

ENDhttps://wiki.ipfsjapan.org

